A force of $\left( {2\hat i + 3\hat j + 4\hat k} \right)\,N$ acts on a body for $4\, sec$ and produces a displacement of $\left( {3\hat i + 4\hat j + 5\hat k} \right)\,m.$ The power used is ............. $\mathrm{W}$
$4.5$
$6.5$
$7.5$
$9.5$
A curved surface is shown in figure. The portion $BCD$ is free of friction. There are three spherical balls of identical radii and masses. Balls are released from rest one by one from $A$ which is at a slightly greater height than $C$.
With the surface $AB$, ball $1$ has large enough friction to cause rolling down without slipping; ball $2$ has a small friction and ball $3$ has a negligible friction.
$(a)$ For which balls is total mechanical energy conserved ?
$(b)$ Which ball $(s)$ can reach $D$ ?
$(c)$ For ball which do not reach $D$, which of the balls can reach back $A$ ?
A particle moves with a velocity $\vec v\, = \,5\hat i - 3\hat j + 6\hat k\,\,m/s$ under the influence of a constant force $\vec F\, = \,10\hat i + 10\hat j + 20\hat k$. Instantaenous power will be ............... $\mathrm{J} / \mathrm{s}$
A ball after falling from a height of $10\, m$ strikes the roof of a lift which is descending down with a velocity of $1\, m/s$. The recoil velocity of the ball will be .............. $\mathrm{m}/ \mathrm{s}$
A body of mass ${m_1}$ moving with uniform velocity of $40 \,m/s$ collides with another mass ${m_2}$ at rest and then the two together begin to move with uniform velocity of $30\, m/s$. The ratio of their masses $\frac{{{m_1}}}{{{m_2}}}$ is
Power supplied to a particle of mass $2\, kg$ varies with time as $P = \frac{{3{t^2}}}{2}$ $W$. Here $t$ is in $seconds$ . If velocity of particle at $t = 0$ is $v = 0$. The velocity of particle at time $t = 2\, sec$. will be ........... $\mathrm{m}/ \mathrm{s}$